

2050 LRTP Needs Assessment for Congestion Management & Crash Mitigation

October 2023 Rich Margiotta, Cambridge Systematics and Vishaka Shiva Raman, TPO

Introduction

2050 Plan Ingredients

Revenue Forecast – Estimated value, thru 2050, of existing funding streams & potential local-option revenue sources

Needs Assessments – *including cost estimates, performance forecasts, and performance-based prioritization*

- Congestion Management & Crash Mitigation safety treatments and traffic flow treatments
- Good Repair and Resilience Pavement, bridge, & transit vehicle maintenance, stormwater systems expansion and vulnerable road hardening

Needs Assessments (cont'd)

Real Choices When Not Driving – Bus and circulator services, paratransit/TD services, trails and side paths separated from motor vehicle lanes

- Major Investments for Economic Growth New or wider highways/ major roads, separated grade interchanges, fixed-guideway transit including BRT, rail, ferry
- Goods Movement & Truck Routes Major projects as well as lower-cost traffic flow treatments focusing on freight flows
- Equity Safety treatments, Good Repair & Real Choices projects to address subpar infrastructure and public health in underperforming areas

Board consideration of preferred scenario

Methodology

Needs Assessment Development

Tampa Bay Regional Planning Model (TBRPM)

- Results from TBRPM include future traffic volumes
- Sketch tool uses traffic volumes to forecast travel reliability, minutes of delay and crashes on major roads
- Treatments were applied to roads based on their congestion and crash performance
- Treatments were selected by the local governments based on recently completed projects

Congestion Management Scenarios

Scenario 1 – TREND (Funding reflecting current spending)

- Annual budget for treatments: \$24 M
- Treatments focused on the most congested roads
 - Freeways: Ramp Metering and Part-time Hard Shoulder Running
 - Arterials & Collectors: Real-Time Traffic Adaptive Signal Control

Congestion Management Scenarios

Scenario 2 – PERFORMANCE (Funding increased to improve system performance

- Annual budget for treatments: \$48 M
- Treatments focused on the most congested roads
 - Freeways: Ramp Metering, Part-time Hard Shoulder Running, Traffic Incident Management
 - Arterials & Collectors: Real-Time Traffic Adaptive Signal Control and Left-Turn Lanes at Intersections where applicable

Impact of Congestion Management Treatments

	Miles Improved		Peak De	ay Reduction	Spee	d Increase	Annual Investment Cost in M		
Highway Type	Trend	Performance	Trend	Performance	Trend	Performance	Trend	Performance	
Collector	48	238	17%	59%	5%	19%	\$1.5	\$12.0	
Divided Arterial	147	147	49%	49%	8%	8%	\$9.0	\$9.5	
Undivided Arterial	56	56	48%	53%	7%	8%	\$3.5	\$5.0	
Interstate/Freeway	49	108	64%	87%	33%	50%	\$9.0	\$21.0	
Total	300	548	48%	70%	14%	21%	\$24.0	\$47.0	

Crash Mitigation Scenarios

Annual Budget : \$25 M for TREND and \$50 M for PERFORMANCE

- Improvements considered on Arterials and Collectors
 - Bike Lanes
 - Intersection Lighting
 - Pedestrian Crosswalks and Signals
 - Convert TWLTL to raised median
 - Reduce Driveway Density
 - Speed Control/Enforcement
 - Traffic Calming

Impact of Crash Mitigation Treatments

Highway Type	Miles Improved		Total Crashes		Fatal Crashes		Ped + Bike		Annual Investment Cost in M	
	Trend	Performance	Trend	Performance	Trend	Performance	Trend	Performance	Trend	Performance
Divided Arterial	565	565	59%	59%	59%	59%	82%	82%	\$21	\$24
Collector	0	277	12%	39%	13%	40%	0%	43%	\$0*	\$11
Undivided Arterial	77	220	40%	64%	42%	63%	43%	80%	\$4	\$15
Total	642	1062	35%	43%	38%	46%	55%	71%	\$25	\$50

* In Trend Scenario money is expended before adding treatments on all corridors

Congestion

\$24 M per year could reduce future peak delay by almost 50% and speed increase by 14% on 300 miles of roadway. Doubling the investment could result in 70% delay reduction and 21% speed increase on 550 miles of roadway.

\$25 M per year could reduce fatal crashes by 35% and bike ped crashes by 55% on 640 miles of roadway. For \$50 M per year, fatal crashes could be reduced by 46% and bike ped crashes could be reduced by 71% on over 1060 miles of roadway by 2050.

Recommended Action:

Approve the Draft 2050 Plan Needs Assessment for Congestion Management and Crash Mitigation and forward to the TPO Board for consideration

Questions/Comments

Vishaka Shiva Raman shivaramanv@plancom.org

