Corridor Planning & Preservation Best Practices
Hillsborough County Corridor Plan Update

Kristine M. Williams, FAICP
Center for Urban Transportation Research
University of South Florida
813-974-9807
kristinewilliams@usf.edu
Project Objectives

- Assess current practices and legal context for corridor preservation in Florida
- Review multimodal corridor planning and preservation best practices in Florida and nationally
 - Roadway and transit corridor preservation methods
 - Integrating land use context and modal options
 - How resilience to climate change and emerging technology may be reflected
- Synthesize findings to serve as guidance to the County in updating its Corridor Plan
Key Findings

1. Florida’s legal context for corridor preservation and management remains strong and extends to all modes in Florida planning law
2. Contemporary thoroughfare plans emphasize context sensitive design, Complete Streets, and grid networks in compact area types
3. Network redundancy and connectivity are strategies for congestion relief, resiliency, and placemaking
4. Resiliency plans, EV charging plans, and smart road classification systems can guide technology and resiliency investments and right-of-way preservation
Best Practice Examples

01 Area Type and Context
 Fort Worth, Indianapolis-Marion County, El Paso

02 Network Spacing and Connectivity
 Salt Lake City, Indian River, Bastrop

03 High-Tech Corridors
 Smart Roads Classification Systems, FDOT EV Master Plan

04 Resilient Corridors
 Resilient Tampa Bay, Network Redundancy
Fort Worth, Texas - Master Thoroughfare Plan

- Adopted 2016, updated 2020
- Corridor preservation and management (regulatory plan)
- Context-sensitive road classification
- Grounded in a “Complete Streets” philosophy
- Includes modal elements in street cross sections
- Detailed procedures for flexibility
Fort Worth, Texas – Street Type Descriptions

- **Activity Streets** are “destination streets”, typically retail-oriented, with generous parkway widths and room for sidewalk cafes. Automobile speeds are slow, lanes are slightly narrower than typical. Parking is typically on-street, and building facades front the street. Buildings are typically 1-3 stories high. Streets are typically in a grid pattern, diffusing traffic. Bicycles may share road depending on speed, but bike lanes also used.

- **Commerce/Mixed-Use Streets** business flavor and often found downtown. Buildings typically multi-storied and often office/commercial-oriented, but may have residential uses on upper floors. Buildings front on street and on-street parking is common, but parking garages are also common. Wide sidewalks are prevalent and busy during rush hours and lunch. Streets typically in grid pattern, diffusing traffic. Commuter transit is prevalent, and traffic speeds are fairly slow. Auto lanes are slightly narrower than typical. Bike lanes often provided.

- **Neighborhood Connectors** provide access from neighborhoods to services. Often at peripheries or within residential areas, and landscaped medians fairly common. Sidewalks or multi-use paths are typically separated from the street by a landscape buffer. Buildings (or residential fences) are generally set well back from the street. Automobile speeds are moderate.

- **Commercial Connectors** typically serve retail and industrial areas. Many driveways may be present, and a mixture of medians and center turn lanes help regulate movements to and from sites. Retail stores are often separated from the street by surface parking lots. Automobile speeds are moderate to high. Bicycle facilities must be carefully designed due to higher density of driveways. Sidewalks buffered from street by landscaping.

- **System Links** emphasize longer-distance auto traffic, often providing connections to freeways or other regional networks. Auto speeds moderate to high. Pedestrians and bicyclists buffered from traffic as much as possible; multi-use off-street paths common, no on-street bike lanes provided. always include raised medians. Most left turns occur at signalized intersections; access to driveways is typically via right turns.
Fort Worth, Texas – Determination of ROW
Fort Worth, Texas - Determination of ROW

Each selection process results in a code and implied right-of-way, such as this example:

- **NCO** - Neighborhood Connector
- **L2** - Two through lanes per direction
- **T0** - No special transit facility
- **NTMS** - Standard-width non-traversable median
- **P0** - No on-street parking
- **BLS (110’)** - Separated bike lane
- **Right-of-way width = 110’**

Non-Traversable Median (NTM)

Standard

16

Standard medians are provided on Neighborhood Connectors, Commercial Connectors, and System Links. They provide the dual function of controlling access between intersections, and accommodating single left-turn lanes at intersections. Note that corridors with standard medians may certainly contain intersections that need dual left-turn lanes; see “Intersections” in Section VII.
Fort Worth, Texas – Application/Flexibility

- Full updates – every 5-10 years
- Amendments (map changes; administrative or Commission)
- Waivers (non-map changes; administrative or Commission)
 - Interim cross sections
 - Width reduction options
 - Median upgrade options
- Street Type Exceptions
 - Special Districts, Park-Adjacent Streets
Indianapolis-Marion County - Thoroughfare Plan

- Adopted in 2018 as optional part of Transportation Element
 - Long range guidance versus regulatory standard
 - Incorporates Complete Streets approach
- Classifies existing and planned roadways and designates area types
 - Functional class (arterial, collector, special)
 - Area type (compact, metro)
- ROW standards and design guidelines (min/max ROW by modal element, may be waived by Department of Public Works)
- Cross sections are “prototypical” not prescriptive
Indianapolis-Marion County – Road Classification
Indianapolis-Marion County – Road Classification
Indy - ROW Standards & Design Guidelines Table

<table>
<thead>
<tr>
<th>Facility and Context Area</th>
<th>Minimum ROW (FL)</th>
<th>Maximum ROW (FL)</th>
<th>Speed</th>
<th>Street Side</th>
<th>Separated Bike</th>
<th>On-Street</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transition/Grading/Utility</td>
<td>Sidewalk</td>
<td>Transit/Bus Shelter</td>
</tr>
<tr>
<td>ARTERIAL (THOROUGHFARE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-lane Primary</td>
<td>104</td>
<td>121</td>
<td>40mph</td>
<td>5</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>4-lane Primary</td>
<td>78</td>
<td>95</td>
<td>40mph</td>
<td>3</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>2-lane Primary</td>
<td>56</td>
<td>80</td>
<td>35mph</td>
<td>3</td>
<td>6</td>
<td>YES</td>
</tr>
<tr>
<td>4-lane Secondary</td>
<td>78</td>
<td>102</td>
<td>35mph</td>
<td>3</td>
<td>6</td>
<td>YES</td>
</tr>
<tr>
<td>2-lane Secondary</td>
<td>56</td>
<td>80</td>
<td>35mph</td>
<td>3</td>
<td>6</td>
<td>YES</td>
</tr>
<tr>
<td>Metro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-lane Primary</td>
<td>124</td>
<td>141</td>
<td>40mph</td>
<td>15</td>
<td>YES</td>
<td>10</td>
</tr>
<tr>
<td>4-lane Primary</td>
<td>102</td>
<td>119</td>
<td>40mph</td>
<td>15</td>
<td>YES</td>
<td>10</td>
</tr>
</tbody>
</table>

Area Type and Context

Fort Worth, Indianapolis-Marion County, El Paso
Broward County Planning Council Trafficways Plan

- Broward County Trafficways Map includes “Context Sensitive Corridors” in green
- These fall into one of three categories: Urban Core, Urban Main Street, or Urban Residential.
- These corridors are tied to Specific Plans that govern ROW (see City of Pompano Beach below)
City of Bastrop, TX Thoroughfare Plan

- New Master Plan and land-use regulations establish street grid as framework for growth.

- Main driver for this change was flood mitigation and overall resilience due to floods and wildfires.
Network Spacing – Right Sizing Guide

- Salt Lake City, Utah example

Indian River County

Extended Roadway Grid Network Map

<table>
<thead>
<tr>
<th>Type Of Facility</th>
<th>Urban</th>
<th>Rural</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. 1 Corridor - 81D</td>
<td>200</td>
<td>---</td>
</tr>
<tr>
<td>U.S. 1 Corridor - 61D</td>
<td>140</td>
<td>240</td>
</tr>
<tr>
<td>U.S. 1 Corridor - 41D w/frontage roads</td>
<td>200</td>
<td>280</td>
</tr>
<tr>
<td>61D Principal Arterial</td>
<td>140</td>
<td>240</td>
</tr>
<tr>
<td>41D Principal Arterial</td>
<td>120</td>
<td>200</td>
</tr>
<tr>
<td>41D Minor Arterial</td>
<td>120</td>
<td>200</td>
</tr>
<tr>
<td>21D Minor Arterial</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Collector</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Subdivision Collector Roads</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Local, Minor or Residential</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Local, Minor or Residential (with closed drainage as well as curb and gutter)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Marginal Access Roads</td>
<td>40*</td>
<td>40*</td>
</tr>
</tbody>
</table>

* Easement or ROW

These minimum standards may be reduced based upon a roadway design, approved or used by the public works director, or by FDOT, that adequately handles drainage within a narrower right-of-way corridor.

Subdivision Collector Map

Network Spacing and Connectivity
Salt Lake City, Indian River, Bastrop
High-Tech Corridors

Anticipate and integrate new designations as technology evolves (e.g., smart corridors)
FDOT EV Master Plan

Will more EV charging stations be needed?

Are there ROW implications?

EVSE Gap Analysis

High-Tech Corridors
Smart Roads Classification Systems, FDOT EV Master Plan
Resilience – Designate Vulnerable Routes

Designate vulnerable routes and associate links with adaptation and mitigation strategies and needed ROW

Source: Resilient Tampa Bay Pilot Program Project, 2020
Resilience - Network Redundancy

- Designate priority routes lacking parallel relievers and connections to alternative facilities
- Increase redundancy and provide alternative routes in the event of an incident or evacuation
Summary of Recommendations

1. Establish a clear and integrated vision of the future thoroughfare system, with flexibility and supporting technical documentation.
2. Classify all thoroughfares by function, area type or context, and modal accommodations.
3. Adapt the thoroughfare plan to an idealized grid and include supporting network concepts.
4. Anticipate and integrate new designations as technology evolves.
5. Increase network redundancy and designate vulnerable routes for management.
6. Establish a dedicated funding source for corridor management projects and acquisition of right of way.
Next Steps: Hillsborough County Corridor Plan Update
Comprehensive Plan Mobility Element

Build and Maintain a Transportation System that Supports the Needs of All Users with Respect to Ability, Resources, Identity, and Mode Preference
Context Based Classification

- Future Land Use
- Context Based Classification
- Transportation Policies
- Livable Communities
Summary of Process

- Implement the vision as established in the Comprehensive Plan
- Identity the transportation network by function, area type, context, and modal accommodations
- Analyze and identify additional grid opportunities and include supporting network concepts such as shared use paths
- Develop scenarios that integrate new technology into the mobility system
- Optimize network redundancy focusing on vulnerable routes
- Analyze and identify methods and procedures to manage projects and set aside right-of-way as part of the development review process
Study Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Year 2022 First Quarter</th>
<th>Year 2022 Second Quarter</th>
<th>Year 2022 Third Quarter</th>
<th>Year 2022 Fourth Quarter</th>
<th>Year 2023 First Quarter</th>
<th>Year 2023 Second Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>March</td>
<td>April</td>
<td>May</td>
<td>June</td>
</tr>
<tr>
<td>Task 1</td>
<td>Review of Land Use and Mobility Elements & T&OPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of Socio-economic Data Estimates & Forecast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comprehensive Plan Land Use and Mobility Element Consistency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updates to T&OPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td>Review of Land Use and Mobility Elements & T&OPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review of Socio-economic Data Estimates & Forecast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comprehensive Plan Land Use and Mobility Element Consistency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Updates to T&OPM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td>Multi-Modal Corridor Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complete Street Standards</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right of Way/Corridor Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrologic Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td>Multi-Modal Performance Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development of Additional Performance Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Application of Performance Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Identification of Additional Corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Model Runs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5</td>
<td>Public Outreach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Targeted Stakeholders - e.g., Homeowners associations, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Focus Group - Experts in new technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RPO Committee meetings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCC and Public Outreach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Working Plan Development Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions?

Kristine Williams, FAICP
kristinewilliams@usf.edu

Richard Ranck, PE, Project Manager
ranckr@hillsboroughcounty.org

John Patrick, AICP, Division Director
patrickj@hillsboroughcounty.org